Partially Balanced Incomplete Block Design (PBIBD)

Why PBIBD?

 Sometimes, BIBDs require large number of replications.

$$b = \binom{8}{3} = 56$$

$$r = \frac{bk}{v} = 21.$$

Partially balanced Association Schemes (m-associate classes)

- Any two symbols are either first, second,..., or mth associates & the relation of association is symmetrical.
- Each treatment has exactly n_i treatments, n_i does not depend on the treatments.
- pi_{ik} is independent of the pair of ith associates.

The numbers $v_1, n_2, ..., n_m, p_{ik}^i$ (i,j,k=1,2,...m)

- parameters of m-associate partially balanced scheme.

Rectangular Association Scheme

m=3

1	2	3
4	5	6

Under this arrangement, with respect to each symbol,

- •first associates: same row
- second associates: same column
- third associates: remaining symbols

1	2	3
4	5	6

The table below describes the first, second and third associates of all the six treatments.

Treatment	First	Second	Third
number	associates	associates	associates
1	2, 3	4	5, 6
2	1, 3	5	4, 6
3	1, 2	6	4, 5
4	5, 6	1	2, 3
5	4, 6	2	1, 3
6	4, 5	3	1, 2

$$n_1=2$$
, $n_2=1 \& n_3=2$

•holds true for other treatments too.

The table below describes the first, second and third associates of all the six treatments.

Treatment	First	Second	Third
number	associates	associates	associates
1	2, 3	4	5, 6
2	1, 3	5	4, 6
3	1, 2	6	4, 5
4	5, 6	1	2, 3
5	4, 6	2	1, 3
6	4, 5	3	1, 2

•(condition (iii) of definition of partially balanced association schemes) p^{i}_{jk} is independent of the pair of i^{th} associates.

• $p_{33}^1 = 1$. (take egs, treatments 1 &2; treatments 2&3)

Triangular Association Scheme

• 2 – class association scheme

 v treatments arranged in q rows and q columns where:

$$v = \begin{pmatrix} q \\ 2 \end{pmatrix} = \frac{q(q-1)}{2}.$$

These symbols are arranged as follows:

- leading diagonals left blank.
- (q/2) positions filled above the principal diagonal by the treatment numbers 1,2,...,v.
- Rest filled symmetrically.

Rows →	1	2	3	4	 <i>q</i> - 1	q
Columns ↓						
1	×	1	2	3	 <i>q</i> - 2	<i>q</i> - 1
2	1	×	q	q+1	 2 <i>q</i> - 2	2 <i>q</i> - 1
3	2	q	×		 	
4	3	q+1			 	
Ē	= -	= -	= -	= -	 = -	= -
q - 1	<i>q</i> - 2	2 <i>q</i> - 2			 ×	q(q - 1)/2
q	<i>q</i> - 1	2 <i>q</i> - 1			 q(q-1)/2	×

first associates : same column second associates: remaining

10 treatments

$$q = 5$$
 as $v = {5 \choose 2} = 10$.

Rows →	1	2	3	4	5
Columns ↓					
1	×	1	2	3	4
2	1	×	5	6	7
3	2	5	×	8	9
4	3	6	8	×	10
5	4	7	9	10	×

Treatment number	First as	sociates	Second associates
1	2, 3, 4	5, 6, 7	8, 9, 10
2	1, 3, 4	5, 8, 9	6, 7, 10
3	1, 2, 4	6, 8, 10	5, 7, 9
4	1, 2, 3	7, 9, 10	5, 6, 8
5	1, 6, 7	2, 8, 9	3, 4, 10
6	1, 5, 7	3, 8, 10	2, 4, 9
7	1, 5, 6	4, 9, 10	2, 3, 8
8	2, 5, 9	3, 6, 10	1, 4, 7
9	2, 5, 8	4, 7, 10	1, 3, 6
10	3, 6, 8	4, 7, 9	1, 2, 5

Six parameters p_{11}^1 , p_{22}^1 , p_{12}^1 (or p_{21}^1), p_{11}^2 , p_{22}^2 and p_{12}^2 (or p_{21}^2) arranged in symmetric matrices $P_1 \& P_2$ as

$$P_1 = \begin{bmatrix} p_{11}^1 & p_{12}^1 \\ p_{21}^1 & p_{22}^1 \end{bmatrix}, P_2 = \begin{bmatrix} p_{11}^2 & p_{12}^2 \\ p_{21}^2 & p_{22}^2 \end{bmatrix}$$

Here,

$$P_1 = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 4 & 2 \\ 2 & 0 \end{bmatrix}$$

 p^{1}_{11}

Treatment number	First as	sociates	Second associates
1	2, 3, 4	5, 6, 7	8, 9, 10
2	1, 3, 4	5, 8, 9	6, 7, 10
3	1, 2, 4	6, 8, 10	5, 7, 9
4	1, 2, 3	7, 9, 10	5, 6, 8
5	1, 6, 7	2, 8, 9	3, 4, 10
6	1, 5, 7	3, 8, 10	2, 4, 9
7	1, 5, 6	4, 9, 10	2, 3, 8
8	2, 5, 9	3, 6, 10	1, 4, 7
9	2, 5, 8	4, 7, 10	1, 3, 6
10	3, 6, 8	4, 7, 9	1, 2, 5

 $p^1_{\ 12}\, \&\,\, p^1_{\ 21}$

Treatment number	First as	sociates	Second associates
1	2, 3, 4	5, 6, 7	8, 9, 10
2	1, 3, 4	5, 8, 9	6, 7, 10
3	1, 2, 4	6, 8, 10	5, 7, 9
4	1, 2, 3	7, 9, 10	5, 6, 8
5	1, 6, 7	2, 8, 9	3, 4, 10
6	1, 5, 7	3, 8, 10	2, 4, 9
7	1, 5, 6	4, 9, 10	2, 3, 8
8	2, 5, 9	3, 6, 10	1, 4, 7
9	2, 5, 8	4, 7, 10	1, 3, 6
10	3, 6, 8	4, 7, 9	1, 2, 5

Treatment number	First as	sociates	Second associates
1	2, 3, 4	5, 6, 7	8, 9, 10
2	1, 3, 4	5, 8, 9	6, 7, 10
3	1, 2, 4	6, 8, 10	5, 7, 9
4	1, 2, 3	7, 9, 10	5, 6, 8
5	1, 6, 7	2, 8, 9	3, 4, 10
6	1, 5, 7	3, 8, 10	2, 4, 9
7	1, 5, 6	4, 9, 10	2, 3, 8
8	2, 5, 9	3, 6, 10	1, 4, 7
9	2, 5, 8	4, 7, 10	1, 3, 6
10	3, 6, 8	4, 7, 9	1, 2, 5

Treatment number	First ass	sociates	Second associates
1	2, 3, 4	5, 6, 7	8, 9, 10
2	1, 3, 4	5, 8, 9	6, 7, 10
3	1, 2, 4	6, 8, 10	5, 7, 9
4	1, 2, 3	7, 9, 10	5, 6, 8
5	1, 6, 7	2, 8, 9	3, 4, 10
6	1, 5, 7	3, 8, 10	2, 4, 9
7	1, 5, 6	4, 9, 10	2, 3, 8
8	2, 5, 9	3, 6, 10	1, 4, 7
9	2, 5, 8	4, 7, 10	1, 3, 6
10	3, 6, 8	4, 7, 9	1, 2, 5

 $p_{11}^2 \& p_{11}^2$

Treatment number	First as	sociates	Second associates
1	2, 3, 4	5, 6, 7	8, 9, 10
2	1, 3, 4	5, 8, 9	6, 7, 10
3	1, 2, 4	6, 8, 10	5, 7, 9
4	1, 2, 3	7, 9, 10	5, 6, 8
5	1, 6, 7	2, 8, 9	3, 4, 10
6	1, 5, 7	3, 8, 10	2, 4, 9
7	1, 5, 6	4, 9, 10	2, 3, 8
8	2, 5, 9	3, 6, 10	1, 4, 7
9	2, 5, 8	4, 7, 10	1, 3, 6
10	3, 6, 8	4, 7, 9	1, 2, 5

Treatment number	First as	sociates	Second associates
1	2, 3, 4	5, 6, 7	8, 9, 10
2	1, 3, 4	5, 8, 9	6, 7, 10
3	1, 2, 4	6, 8, 10	5, 7, 9
4	1, 2, 3	7, 9, 10	5, 6, 8
5	1, 6, 7	2, 8, 9	3, 4, 10
6	1, 5, 7	3, 8, 10	2, 4, 9
7	1, 5, 6	4, 9, 10	2, 3, 8
8	2, 5, 9	3, 6, 10	1, 4, 7
9	2, 5, 8	4, 7, 10	1, 3, 6
10	3, 6, 8	4, 7, 9	1, 2, 5

Rows →	1	2	3	4	 <i>q</i> - 1	q
Columns ↓						
1	×	1	2	3	 <i>q</i> - 2	<i>q</i> - 1
2	1	×	q	q+1	 2 <i>q</i> - 2	2 <i>q</i> - 1
3	2	q	×		 	
4	3	q+1			 	
Ē.	= -	<u>:</u>	= -	= -	 = -	= -
q - 1	<i>q</i> - 2	2 <i>q</i> - 2			 ×	q(q - 1)/2
q	<i>q</i> - 1	2 <i>q</i> - 1			 q(q-1)/2	×

In general, if q rows and q columns of a square are used, then for q > 3

$$v = {q \choose 2} = \frac{q(q-1)}{2},$$

$$n_1 = 2q - 4,$$

$$n_2 = \frac{(q-2)(q-3)}{2},$$

$$P_1 = {q-2 \quad q-3 \choose q-3 \quad \frac{(q-3)(q-4)}{2}}$$

$$P_1 = {q \quad 2q-8 \choose 2q-8 \quad \frac{(q-4)(q-5)}{2}}.$$

Construction of Blocks of PBIBD under Triangular Association Scheme

Approach 1

Rows →	1	2	3	4	5
Columns ↓					
1	×	1	2	3	4
2	1	×	5	6	7
3	2	5	×	8	9
4	3	6	8	×	10
5	4	7	9	10	×

Blocks	Treatments			
Block 1	1,	2,	3,	4
Block 2	1,	5,	6,	7
Block 3	2,	5,	8,	9
Block 4	3,	6,	8,	10
Block 5	4,	7,	9,	10

Approach 2

Rows →	1	2	3	4	5
Columns ↓					
1	×	1	2	3	4
2	1	×	5	6	7
3	2	5	×	8	9
4	3	6	8	×	10
5	4	7	9	10	×

Blocks	Columns of association scheme	Treatments
Block 1	(1, 2)	2, 3, 4, 5, 6, 7
Block 2	(1, 3)	1, 3, 4, 5, 8, 9
Block 3	(1, 4)	1, 2, 4, 6, 8, 10
Block 4	(1, 5)	1, 2, 3, 7, 9, 10
Block 5	(2, 3)	1, 2, 6, 7, 8, 9
Block 6	(2, 4)	1, 3, 5, 7, 8, 10
Block 7	(2, 5)	1, 4, 5, 6, 9, 10
Block 8	(3, 4)	2, 3, 5, 6, 9, 10
Block 9	(3, 5)	2, 4, 5, 7, 8, 10
Block 10	(4, 5)	3, 4, 6, 7, 8, 9

Approach 3 (consider all 1st associates of given treatment)

Rows →	1	2	3	4	5
Columns ↓					
1	×	1	2	3	4
2	1	×	5	6	7
3	2	5	×	8	9
4	3	6	8	×	10
5	4	7	9	10	×

Blocks	Columns of association scheme	Treatments
Block 1	(1, 2)	2, 3, 4, 5, 6, 7
Block 2	(1, 3)	1, 3, 4, 5, 8, 9
Block 3	(1, 4)	1, 2, 4, 6, 8, 10
Block 4	(1, 5)	1, 2, 3, 7, 9, 10
Block 5	(2, 3)	1, 2, 6, 7, 8, 9
Block 6	(2, 4)	1, 3, 5, 7, 8, 10
Block 7	(2, 5)	1, 4, 5, 6, 9, 10
Block 8	(3, 4)	2, 3, 5, 6, 9, 10
Block 9	(3, 5)	2, 4, 5, 7, 8, 10
Block 10	(4, 5)	3, 4, 6, 7, 8, 9

PBIBD with m-associate classes

- v,b,k
- v treatments arranged in b blocks according to massociate partially balanced association
- a) Every treatment occurs at most once in a block
- b) Every treatment occurs exactly in r blocks
- c) If two treatments are the i^{th} associates, they occur in exactly λ_i (i=1,2,...,m) blocks.

- b,v,r,k, λ_1 , λ_2 ,..., λ_m , n_1 , n_2 ,..., n_m : parameters of first kind p^i_{ik} : parameters of second kind
- • λ_i = λ for all i=1,2,...,m then PBIBD reduces to BIBD.

Conditions for PBIBD

(i)
$$bk = vr$$

$$(ii) \sum_{i=1}^m n_i = v - 1$$

$$(iii)\sum_{i=1}^m n_i \lambda_i = r(k-1)$$

$$(iv) n_k p_{ij}^k = n_i p_{jk}^i = n_j p_{ki}^j$$

$$(v) \sum_{k=1}^{m} p_{jk}^{i} = \begin{cases} n_{j} - 1 & \text{if } i = j \\ n_{j} & \text{if } i \neq j. \end{cases}$$

Interpretation of Conditions for PBIBD

(i)
$$bk = vr$$
 (same as BIBD)

(ii)
$$\sum_{i=1}^{m} n_i = v - 1$$
 (w.r.t to each treatment, the remaining (v-1) treatments classified as first, second,...,mth associates; each treatment has n_i associates)

(iii)
$$\sum_{i=1}^{m} n_i \lambda_i = r(k-1)$$
 (A occurs in r blocks, r blocks contain r(k-1) pairs of treatments; the n_i associates of A occurs in λ_i times)